The 3,7-diazabicyclo[3.3.1]nonane scaffold for subtype selective nicotinic acetylcholine receptor (nAChR) ligands. Part 1: the influence of different hydrogen bond acceptor systems on alkyl and (hetero)aryl substituents.

نویسندگان

  • Christoph Eibl
  • Isabelle Tomassoli
  • Lenka Munoz
  • Clare Stokes
  • Roger L Papke
  • Daniela Gündisch
چکیده

3,7-Diazabicyclo[3.3.1]nonane is a naturally occurring scaffold interacting with nicotinic acetylcholine receptors (nAChRs). When one nitrogen of the 3,7-diazabicyclo[3.3.1]nonane scaffold was implemented in a carboxamide motif displaying a hydrogen bond acceptor (HBA) functionality, compounds with higher affinities and subtype selectivity for α4β2(∗) were obtained. The nature of the HBA system (carboxamide, sulfonamide, urea) had a strong impact on nAChR interaction. High affinity ligands for α4β2(∗) possessed small alkyl chains, small un-substituted hetero-aryl groups or para-substituted phenyl ring systems along with a carboxamide group. Electrophysiological responses of selected 3,7-diazabicyclo[3.3.1]nonane derivatives to Xenopus oocytes expressing various nAChR subtypes showed diverse activation profiles. Compounds with strongest agonistic profiles were obtained with small alkyl groups whereas a shift to partial agonism/antagonism was observed for aryl substituents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The 3,7-diazabicyclo[3.3.1]nonane scaffold for subtype selective nicotinic acetylcholine receptor ligands. Part 2: carboxamide derivatives with different spacer motifs.

3,7-Diazabicyclo[3.3.1]nonane (bispidine) based nicotinic acetylcholine receptor (nAChR) ligands have been synthesized and evaluated for nAChRs interaction. Diverse spacer motifs were incorporated between the hydrogen bond acceptor (HBA) part and a variety of substituted (hetero)aryl moieties. Bispidine carboxamides bearing spacer motifs often showed high affinity in the low nanomolar range and...

متن کامل

Potential state-selective hydrogen bond formation can modulate activation and desensitization of the α7 nicotinic acetylcholine receptor.

A series of arylidene anabaseines were synthesized to probe the functional impact of hydrogen bonding on human α7 nicotinic acetylcholine receptor (nAChR) activation and desensitization. The aryl groups were either hydrogen bond acceptors (furans), donors (pyrroles), or neither (thiophenes). These compounds were tested against a series of point mutants of the ligand-binding domain residue Gln-5...

متن کامل

Carbamoylcholine homologs: novel and potent agonists at neuronal nicotinic acetylcholine receptors.

The classic muscarinic acetylcholine receptor (mAChR) agonist carbamoylcholine (carbachol) does not seem to be the most obvious lead for the development of selective ligands at nicotinic acetylcholine receptors (nAChRs). In the past, however, N-methylations of carbachol have provided N-methylcarbamoylcholine and N,N-dimethylcarbamoylcholine (DMCC), which predominantly display nicotinic activity...

متن کامل

Running title: Hydrogen bonding in 7 nAChR function

A series of arylidene anabaseines were synthesized to probe the functional impact of hydrogen bonding on the human 7 nicotinic acetylcholine receptor (nAChR) activation and desensitization. The aryl groups were either hydrogen bond acceptors (furans), donors (pyrroles) or neither (thiophenes). These compounds were tested against a series of point mutants of the ligand binding domain residue Q5...

متن کامل

Synthesis of H-bonding probes of α7 nAChR agonist selectivity

The α7 subtype of the nicotinic acetylcholine receptor (nAChR) is the target of studies aimed at identifying features that will lead to the development of selective therapeutics. Five arylidine anabaseines, three with pyridine rings and two with the pyrrole rings, were synthesized in 35 65% yield via aldol condensation. The compounds are homologs of benzylidine anabaseine and were chosen for sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioorganic & medicinal chemistry

دوره 21 23  شماره 

صفحات  -

تاریخ انتشار 2013